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DEGENERACY IN IDEAL CHEMICAL
EQUILIBRIUM PROBLEMS
James K. Bigelow*
The'RAND Corporation, Santa Monica, California

I INTRODUCTION
" “ A single- or multi~phase chemical equilibrium problem

may be thought of as the problem of ﬁinimizing a particular
nonlinear functioﬁ (the free enexrgy) of composition subject
to the conditions that the composition vector be nonnegative
and satisfy a system of linear eéuatiqns LL&Q§70§>°'3§n%§
laws).. It was pointed out in a previous-papeg\E¥¥f?ﬁEE"fﬁe
.free energy is convex and homogeneous of degree one, but
that as a variable approaches zero, the free energy may
behave ba@izz

[

»In this papep, the second in a series of three*,
e ‘

il
P Y

“vthe phrase '%hemical equilibrium problem'" refers oniy to
& problem with a particular mathematical form. Problems
of this form arise in many situations that are not clas—

sically denoted chemical equilibrium problems.(}For example,

*Any views expressed in this paper are those oX the
author. They should not be interpreted as reflectind the
views of The RAND Coxporation or the official opinion ox
policy of any of its goverrmental or private research sponscic,
Papers are repreduced by The RAND Corporation as a courtesy
to members of its staff,

*%The first is ''Chemistry, Kinctics and Thermodynamics; "

the third, “Computing Fquilibrium Compositions of Ideal
Chemical Systems',
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the dual to a geometric programming problem [2], [3], has

this form. Also, steady-state problems [4], manry of which

arise ncturally in industry and in the chemical laboratory,

can often be represented mathematically by problems of
this form.

We call the problems under ~onsideration 'ideal'' be-
cause they are derived from chemical equilibrium problems
which take the simplest form possible, As a consecquence,
the free-cnergy function is as simple as it can be [1].

The ideal chemical equilibrium problem, then, is the
problem of minimizing a function F(xl, Xoy oees xn), de—

finded below, subject to the linear counstraints:

n
(1.1) .Zl a %y = by s 1=1,2, ...y m
J:

and the inequalitiles:

(1.2) X5 >0, , 3=1, 2, ..., m,

The aij and bi are given real constants. We assume that
the m equaticns (I.1l) are lincarly independent, and so
that the problem will not be trivial, that m < n.

The n variables xj are partitioned into p nonenpty

subsets called compartments, or phases., We denote the

compartment containing the jEE variable by <j>. We may
indicate that x; and x) arc in the samc compartment by
o

writing:




je<ic or kel or <i>= <k,

Zach compariment has assoclated with it a gum,

(1.3) §§k> - je§k> Xy

Each variable has associated with it a variable fraction,

(1.4) Ry = .

%<3

The objective function to be minimized is:

n
(1.5) F(%y, eoes xn) - jil xj(cj + log ﬁj).
The quantities ¢4, €4, ooy c, are given real constantg,
If Xy = 0 for some j, then either ﬁj = 0 (in the event

that E;j > 0) or ij is undefined (if §;j> = (), In either

>
case, log &j is undefined; but to maintain the continuity
of F at the boundary of the constraint set, we define

Xy log ij = 0 whenever xj = 0 ([5], p. 364).

It will be convenient to use matrilx notation, We

PPN SO

let A be a matrix whose ijEE element is aij‘ (The first

-

index refers to the row number, the second to the column,
Thus A has m rows and n columns,) Similarly, b is a

column vector of dimension m, whose LEE compenent 1s bi'



In the same fashion, we let x be the n~vector with
components X % the n-vector with components ﬁj; log &
the n-vector with components log ij; and ¢ the n-vector
with components Cye All of these are colurn vectors.

Using vector notation, we may write the chemical

equilibrium problem in the following compact form:

Min F(x) = Min x . (¢ + Loz X)
(1.6) ' s.t. Ax=0b

X > 0.

The notation x « (c + log X) denotes the inner product
of the vectors x and (c + log %).

As we shall see, the singulaxr behavior of F at the
boundary of its domain, the nomuegative orthant, malkes it
difficult ever to recognize 2 solution to (I.6). In this
paper we discuss a method for surmounting this problem,

called degeneracy, and a method for avoiding it.



II, VIRTUAL MOLE FRACTIONS

In this seetion we will discover how to recognize
when a vector x is a solution to Problem (I.6)., We
touched on this question in [1], where we showed a way
to recognize whether x solved (I.6) if x were strictly
positive, 1In this section we extend the result to include
all feasible x.

It will be convenient to define the concept of an
admissible direction.

Definition: Let a composition vector x be feasible in &
given chemical equilibrium problem, That is, x satisiles
Ax = b, x >0, An n-vector 6 is saié¢ to be admissible
at x if for every t > 0, t sufficiently small, x -+ ¢ is
feasible,

We will have occasion to consider several different
chemical equilibrium problems with different constraint
sets. When we refer to the concept of admissibility, we
mean that a direction ¢ is admissible for the problem then
under consideration,

Note that ¢ is admissible at x if and only if Ag = 0
and ej > 0 for every j such that Xy = 0.

The difficulty in recognizing solutions arises from

the behavior of the Gibbs function F(x) when some of the




. = 0. It is well known that since F(x) 1s convex, F

3

achieves a minimum at x 1f and only if for every reaction

vector 6 admissible at x,
Fg(x) > 0

where Fé(x) is the derivative of F at x in the direction

¢. This derivative is linear in 6 whenever x > 0; but it

]

may be non-linezr--indeed it may be infinite--when some X5 0.
Much of the content of this chapter was anticipated by

N. Z. Shapiro, who proved a restricted form of the

main theorem, II.4, Theorem IIL.4 in all its generality was

proved by the late Dr. Jon Folkman, although the present

author never saw that proof. The proof appearing here is

original with the author,

It will bc convenient at this point to define two sets,

H(A, b) = {x e E%|Ax = b, x > 0}

M(FIH(A, b)) = {x ¢ H(A, b)[F(x) < F(y)¥ y ¢ H(A, b)],

(One might as easily define M(F|W) for a general set W and
general function F:W - El. Thus M(F|W) = {x e W|F(x) < F(y)
¥ y e W}.) Then H(A, b) is the set of all x which satisfy both
the mass balance and non-negativity constraints of problem
(1.6), i.e., H(A,b) is the sct of feasible compositions of

the chemical system. M(FIH(A, b)) (written M(F[H) if there
will be no confusion) is the set of solutions to problem

(1.6), and hence the set of equilibrium compositions of

the chemical system,




In this section we will derive a characterization of
M(F|H). The name, "Virtual Mole Fractions," arises from
the fact that in equilibrium chemistry it is convenient
to express the variables in units of 'moles" and to call
the variable fractions "mole fractions.' It may happen
that at equilibrium, one or more phases of a chemical
syétem are empty. In this case, the mole fractions of
the variables in the vanished phases are undefined; but
we will show how to define quantities to take their place,
quantities called ‘''virtual mole fractions."

Before we can do any of the real wock of this section
we must satisfy ourselves that Problem (I.6) may be solved

using Lagrange multipliers.

Theorom IL.1l: Assume thexe exists x ¢ H(A, ») such that

x > 0, and suppose that M(F|H(A, b)) is nonempty. Let

I > 0}. Then there exists 7% ¢ E® such that:
M(FlH(A, b)) € M(F(x) -~ 1°%Ax - b)[R).

Rewark: This statement says exactly that each solution
of (1,6) must also minimize the Lagrangian form

O .
F(x) ~ 7 (Ax - b) among all non-negative x.

Proof: TFrom (5], Theorem 8.13, p. 368, we know that T is
convex on R. Hence, the Lagrangian is convex.

Let x° ¢ M(F|H(A, b)) (which we assumed was nonempty),

and define the compact, convex set Ry = {x > 0]1x% ~ x" <13,

L e ,‘A!-J«.,.-m S in e



From [6], Theorem 6, p. 478, we know that there

exists m° e E® such that:

(15.1)  F® =Min  [F(x) - 7°%Ax - b)].
’ Xe Rl

Suppose»F(xl) < F(x°) for some X ¢ R. By choosing 1 >\ >0

sufficiently small we may construct y = (kxl + (1 -x% ¢ Rys

which by convexity must satisfy F(y) < F(x%). Thus:

(11.2) F(x% = Min [F(x) - n%Ax ~ b)].
xeR .

The result is immediate. Q.E.D.

For any x > 0 we partition the indices {1, 2, ..., n}

into two disjoint scts:

|
i

« (3lRg, = 0)
J = {ji§<j> > 0}-

Given any vector 5 ¢ En, we separate it into two terms,

{ . N
6. if j el
(eT>' = ) J
=J lO otherwise
eJ = § - GI

With the above notation, we may use [5], Thecorems
8.10 and 8.11, p. 368, and the vector notation developed
in section I to write the dexivative of T at x in the
direction ¢ in the following compact form:

8




T T A Ty m——— T o

] a .
(11.3) F}(x) = 91'<°i + log 91) +.95'(c3 + log xJ).

This is defined for all ¢ admissible at x. We understand
that Fé(x} may take on the value —», Thus if for some
j’= 0, we se? that log ﬁj = ~o, In this

. case, 8y >0 implies that Fé(x) = -,

j € J we have x

Theorem II.2: Let x ¢ H(A, b)., Then x ¢ M(F|H) if and
(x) > 0 for all g admissible at x,

[ v

only if F

Proof: [5], Theorem 10.2, p. 372.
QED.
Corollary II.3: Let x ¢ H(A, b) and x > 0, Then x ¢ NM(F|H)

if and only if:
(11.4) 8 + (c +log k) =0 % €3 Ae = 0.

proof: [5], Theorem 10.3, p. 372. This also follows
immediately from Theorem II,2, since x > 0 implies I is
ey,

. QED.

Notice that if x ¢ H(A, b), and x > 0, the cptimality
condicion in Ccrollary II,S.requires a2 knowledge only of X,
not of x. It is the mole fractions, not the moles that count.
In the cvent that I is not empty, we suld like something
to take the place of % in (II,&). This motivates the

following definition and theoren.

-



(II.5a) 3(x) = {¢ ¢ E*|9.> 0, 6+(c + log v) =0 * %0 3 Ap = 0,}
=% v jed,
and wJ 3 ¥ ]
Elcaentary linear algebra shows that we may write the
equivalént definition: e
(II.5b) #(x) = {9 ¢ E'le >0, c + log ¢ = Alw for some m ¢ Em,§

and 9. =R, ¥ jeJ.
n wJ 5 J J

Theorem II.4: Assume Z y € H(A, b) 3 y > 0, and let

x ¢ H(A, b). Then x ¢ M(F|H) if and only if

T ¢ 3(x) D s> <.l for every <j>, where Ogy> = kc§j> P
To prove Theorem IIL.4, we will need the following

lemma.

Lemma II.5: Let © ¢ EP satisfy © > 0. Then fox any

8¢ EP, 86>0,

Rearranging terms in (IL.6) we find it equivalent to:

Mo

I1.7 0.(1 8. — log &.) > 0.

(11.7) I, 0y (los By - log by) >

This function of 6 is of exactly the same form as Gibbs
function, with cj = —log &j. If we minimize the function

in (1I.7) subject only to the constraint ¢ > 0, we will be

10
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solving a chemical equilibrxrium problem, The absence of
mdss balance constraints tells us that every vector v ¢ EP

is a reaction vector.

Let- 8 > 0, and take the derivative in the direction
v. By (I1.3) this becomes:

p . ..
F;(e) = jzl vj(lag ej - log $j)

Clearly this is nbnynegative for every v ¢ EP if and only
if for each j,

ej"’q’j

Thus the function is minimized if and only if for some
>0, 6=oap.

But clearly § = & implies that (IIL.7) is zero. Q.E.D.

Proof of Theorem II.4: Define the Lagrangian problem P ()

to be:

(I1.8) P(m): Min G(x) = Min [F(x) — m(ax = b)]
s.t. x> 0,

Let x° ¢ H(A,b). By Theorem II.1, it will be sufficient

to show that the following statements are equivalent:
* 0 by °
E - X 3 ’) ] 1 V
(1) Qe §(x") gy < 1 WD

(11) 7 7% ¢ E® 3 x° solves P(n°).

11



Note that for each w, P(w) is just a chemical equi~

1librium problem with no linear equality constraints. Thus

by Theorem II.2; x° solves P(n°% if and only if

Y o N
(11.9) Ge(xo) = GI°(cI + log GI) + eJ'(cJ + log xg) - BAw

¥g admissible at x°,
Clearly, ¢ is admissible at x° in this problem if
and only if ej > 0 whenever xg = (0, Immediately we see

that if x? = 0 for some j ¢ J, we can find ¢ with 65 > 0
. .

2

and force Ge(xo) = —w», Thus we may suppose xj > 0 for each

joe J.

Tt is obvious that (II,9) camnot hold unless,

, 20 _ ,T o

(II.10)} cy ok log 2y = Ajn
If we define a vector ® by:

(IT.11) ¢ + log v = ALRC,

then clearly, since x? >0 forjed, o©es(x%. (See

definition (II,5b).) Substituting (II.1l) into the inequality

(Ii.Q), we find that x° solves P(n°) if and only if:
(IL.12) oy~ (log 8p —logop) > 0 ¥ o7 > 0.

Let I¥ be the set of compartments <j» whose indices

are in I. Then (II1.12) becomes:

(.13 O D e,(log b,

- log m.)) >0 N
<kSeI# V\jecks I J o=

12
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S e s
it s e A < T s

N e

Lemma IL,5 consideved exactly such quantities as the

inner sum, Thus (II.13) holds if and only if:

- X e, log v, >0 ¥ 8 2'0;
c>elr jedks 1 <k> = L

It is easy to See that this is true ¥ 6 2 0 if and only
if
b 5 W *
(11,14) ks <1 <k> e I
Since v, =%.%, and Y %.°=1ifkeJ
g jedk> I ’

(I1.14) holds if and only if statement (i) above is true,

compieting the proof., Q.E.D.

For each x ¢ M(F|H), ve may define a subset of 3(x)

as follows:

(IL15) 94 = {o e 2T, 21 w<is),

We call ¢%(x) the set of virtual mcle fractions associated

with x,

There is no recason to suppose that M(F|H) consists
of but one point. Problems exist which possess no solu~
tion, and others can be constructed which possess many.
dowever, wheneves M(F|H) is non-empty and H(A, b) contains a

y > 0, we can prove uniqueness of a sort.

13
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Theorem II.6: Suppose T z e H(A, b) 3 z > 0. Then for
any x, y ¢ M(F|H), s*(x) = #*(y). That is, there is a unique

set 3* of virtual mole fractions associated with problem (1.6).

Proof: Define the carrier of a vector x € %, x > 0 by:

c(x) = {j]xj >0} .

Karlier in this section we defined a set J of indices of
variables in compartments which did not vanish, and in
the course of Theorem II.4 argued that if x ¢ M(F[H), then
jed= X, > 0. Thus for x ¢ M(F|H), J = C(x).

Lemma .7, pg. 370 of [5] states that if M(F|H)

is unon-empty, then there exists x° ¢ M(F|H) such that:

c(x) < ¢ ¥ x e M(F|H) .
Trom this and [5] Lemma 9.5, pg. 370, (which states that if
x, v € M(F|H), then %j = ?1 whenever both are defined) we

know that for every x e M(F|H),

(11.16) f:j = xg

Clearly, then,

(II1.17) g#(x°%) < 3% (x) ¥ x e M(T|H) .

Suppose © ¢ #%(x). Let ¢ = x° - x. Let us now eval—

350

and hence 0 is admissible at x. Further, x, x° ¢ M(F|H).

H
uate Fe(x). We may do this since clearly ej >0 if x

Thus:

1

e B s gy




L o o o e i
T . Sy g P

B RV - 3
A T =R SV

{ .
(1;.13) Fo(x) = Z)x' ejo(§J + log &)

3eC(x)
4 Doy (e +log by = 0.
3eC(x%)-C(x) o

On the other hand, ¥ € Q*(§5 tells us that:

(I1.19) jec%)){o) ej'(cﬂ + log epj) =0,

Subtracting (IL.18) from (11.19) we £ind that:

L(IL20)- 0= L, (log oy ~ log By)

3eC(x%)~C(x) |

< Z}ej log $<j> < 0.

3eC(x%)~C(x)
The first inequality holds as an equality if and only if
aj = mj for gach j, by Lemma II.5., The second inequality
holds as an equality if and only if $<j> a 1 for each <j>.
That is, © ¢ §%(x) = 0 = ig ¥ j e C(x°. Hence

v e 8%(x%. Thus
(II.21) 3% (x) < 8*(x%.

Combine (II.21) with (II.1l7) and the theorem is proved. Q.E.D.

We can more fully describe $* as a.consequence of the

next several results. We let:
P*= {ne E° | ¢+ log®p = ATy for some 9 ¢ & 1.

15
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Lomma TT.7: "P¥ 1s convex.

2roof: Let x ¢ M(F|H(A, b)) have a maximal carrier J = C(x).
Then we may say that m ¢ P* if and only if n satisfies:

AL

T =eyt log ﬁJ
(11.22)

2 exp(AEﬂ - ck) <1 for each j ¢ J.
ke<j>

If we the. let 0, = exp(AEﬁ - cj) for any m satisfying
(II.22), the vector 9 € ¥,
Since 'exp' is a convex function, it is cleaxr that

the constraints (II.22) describe a convex set. Q.E.D.

Lemma IX.8: Suppose there cxists y € H(A, b) such that
y > 0, and let the matrix A have full rank m, Then P¥

is compact.,

Proof: P¥, the set of w satisfying (II,22), is surely closed.
If it is not compact, it must be unbounded.

Since P* is convex, if it is to be unbounded, by [4],
Lemma 3, there must exist a ray 7 #} 0 such that for any
e P¥, w+ tN ¢ P* for every t > 0. Clearly (II.22) implies

that 7 must satisfy:

A§n=0 if jed
(1I.23)
A0 4E 3¢ 3

16




Let x ¢ M(F|H) as in Lemma I1.7, and let y ¢ H(A, b)
satisfyy> 0, If o=y -x,\then clearly ej >0 if j ¢ J.
Further, since x and y ¢ H(A, b), Ap = 0. . Thus, by (II,23),

T

T T = n = T =
(11,24). 6 AN jgl ejAjzz X ejAjn 0.

idJ

Agéin by (II.23), since ej > 0 and‘Agn's 0 if j ¢ J, we must
have A'§7z =0 if j ¢ J. Hence,

(II.25) . Aly=o,
Since A has full row rank m, (II.25) impliéastiybni:
(11.26) n =0,

Thus P* is bounded, Since it is closed as well, P* is

compact, Q.E.D.

Corollary II.9: Q% = {a ¢ ED | = ATn for sone m ¢ P¥}

is compact if there exists y ¢ H(A, b) satisfying y > 0.

That is, Q* is compact whatever the rank of A.

Proof: Let A have rank r < m, and let B be an m X m non~
. . \

singular matrix such that BIA = ( g ), where A is an ¢ X n

matrix of rank r, and '"0" denotes the (m — r) X n matrix

consisting entirely of zeros. Let(g)= BTb. Clearly,
M(F|H(A, b)) = M(F|H(A, B)).

Define P* to be the sct of r—vectors 7 such that:

v e i e



Xin = C; + log %y
z-exp(ﬁrﬁn-ock)jl ¥ 3¢ J.
ke<j>
Clearly, N € P* if and only if for some arbitrary (m — r)—
vector vy, B(ﬁ) = T ¢ P¥,
Let: '

Q* = {a ¢ Enla = KTn for some 7N € P¥},

By Lemma II.8, Px is compact. As the range of a con-
tinuous (in fact linear) function whose domain is compact,
surely 0% is compact. But it is easy to see that Q* = Tx,

Q.E.D.

Theorem II,10: &% is compact if there exists y ¢ H(A, b)

satisfying y » 0.

Proof: o € §* if and only if 05 = exp(aj - cj) for some
a e Q*¥, Since * is the range of a continuous function

whose domain Q* is compact, 3* must itself be compact.

Q.E.D,

It is not true that &* is a convex set in general.

We defined $* in such a way that for any compartment
¢j> which need not be empty at equilibrium (i.e., such
that for some x ¢ M(F|H), Xegs > 0), §<j>= 1 for every
€ ¢ §*, and further, any €1, €2 € $%* agree in compartment
<j>. The next result extends this idea slightly., It will

prove important later,

18
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Lemma TI,1l: Suppose for every § e &%, E<j> = ] for a par-

ticular <j>. Then for each k ¢ <j>, and every gl, 52 € &%,
el _ g2
gk .g:kc

Proof: Suppose gl, éi € 3%, and §§; & §lzc for some k € <j>,

Let ml, nz € P*, be such that:

i

g- = exp(ATrri -c) 1Li=1, 2,
| ' w4 vl
\ Since P* is convex (Lemma II.7), N = ———— 1s an element

2
\ of P*. Let:

y = exp(ATn = c).
Clearly, then,
ekl (511{512() ,
But for any a, b >0, a # b, it is well ‘known that:.:
(ab) % .a-_",)_'l_.bi
Thus, since for some k ¢ <j>, 5112 + t::l?f, we have:

1o\® &+ §§)
Y. o= T (g g ) < T =1 QED,
< kegyy VKK ke<i> Z

19
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III: Overcoming Degeneracy With Slacks

Although we now know how to recognize whether a com-
position x is a solution to problem (I.6) we still face
several difficulties in trying to solve the problem. One
of them is constructing the vector which satisfies the
assumption made throughout the previous section, that there
exists a vector x ¢ H(A, b) such that x > 0. This is discussed
in [7].

Other difficulties concern degeneracy. It may be,
for example, that the solution set M(F'L' of a particular
problem contains more than one vector %, Or it may be that
for some x ¢ M(F|H), at least one phase i. «inty., To cope
with this last difficulty, we have construci.J the (laborate
theory of Section II. This chapter develops from that theory a

method that avoids both of these difficulties.

1. Silaels: General Form

Ve way insure in mor cases that the problem we ac—
tually solve will have a unique, strictly positive solution
by addin; on. cutra variable to each compartment, These
extra variaoles are called slacks., With them, the problem

becones:

[ —

PR ——



{ X. S<.>
Min{s xj<cj + 10g )+ IS¢y 108 = i -
\ Xt <P x> T 5%

(III.1.1) s.t. Ax = b
I I N
X > 0

The mole fractions are of course, changed by the addition

of slacks. Thus in (III.1.1)

X, o S<.>
(I11.1.2) %, = ———d s S . = —=SlI
3 %.. +58,. <P .. +8.,
<> <P <> <>
where X<j> is as it was before.

Notice that this method of handling degeneracy does
not require that the problem actually be expanded. Instead,

we may treat the slacks implicitly, choosing a small pos—

itive 8<k> for each compartment <k> and solving:
e - A a
“1n(§ xj(cj + log xj) + /@ 8<j> log 8<j>)
J 3>
(II1.1.3) s.t. Ax =b
x>0
To compute £, and g ¢ in (IIL.1.3) we have substituted
e,._ £ . 217 C > i
<> for S<J> wherever the latter occured in (III.1.2).
We define:
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(III.1.4) F (x) = § xJ(cJ + log X. ) + <§> <> log & <>

where € is the vector whose components are the €<j>.

Theorem TII.1.1l: Assume there exists y ¢ H(A, b) satisfy-

ing vy > 0. For each &> 0, let M(FslH(A, b)) be nonempty.
Then it contains exactly one point x(€), and that point is

a strictly positive vector.

froof: Suppose M(FelH) is non-empty. Looking to (III.1.1)
we see that by adding slacks to the problem, we have in-
sured that the sum of variables, including the slacks, for
each phase, must be strictly positive (in fact it can be
no smaller than €<j> > 0). Thus the set J (of indices in

non~vanishing compartments) must always include every index

5.
But we know f£rov Theorem II.4 that the solution must
be strictly positive for each index in J, Hence every
X ¢ M(Felu) is strictly positive,
Lemma 9.5, p. 370, of [5] states that if

Xy, Y € M(Fefd), then since x, y > 0:

. =9, i=1,2, ...y n

J 3’
where ij and 9j are defined according to equation (IIIL.1.2).

In particular:

<i> - <2

e P&y Ve T &gy

L
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Thus §{j> = §k3>' Simple algebra shows from this that

X =y, QED,

Theorem III.1.2: Assume there exists y ¢ H(A, b) such that

y > 0. TFor eache > 0, M(FalH) is non~empty if and only
if M(F|H) (the solution set of the problem unperturbed by

slacks) is bounded and non-empty.

Proof: (=) Suppose M(F|H) is empty or unbounded. Then
[4], Theorems 2, 4 and 5, state that there must be a non-

zero vector g € E satisfying:

F(8) <0
(II1.1.5) Ag =0
6>0, and g $ 0.

Choose any y ¢ H(A, b) such that y > 0, (We know from
the previous Theorem III.1,1 that only such y are candidates

for a solution to the perturbed problems,) Then:

F(y + t8) < F(y) + tF(e)

by the convexity and homogeneity of F. Thus

' ? - - T
(II1.1.6) F,(y) = ]éir(1)1+1(y ) =T ¢ re) <0 .

From equation (IL,3) we may compute the directional

derivative of F8 at y in the direction 8 to be:

. d ! -
(II1.1.7) %ig+ Ic Fe(y + tg) = Fe(y) + I 9<j>log
&J\
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Since 6 > 0, each of the sums <j> is nonnegative, Because
o + 0, for at least one <j> we must have §¥j> > 0, For

every <j>, the fact that 8<j> > 0 insures that:

3.,
(III.1.8) log S <ilogl=0.

Yei> T &5>

Combining (VI.1.6-8) we find that:

‘ d
(11I1.1.9) if’(‘,‘w“ 3¢ Fely + t0) < 0.

Thus by Theorem IL.2, y ¢ M(F,|H). Sincc y > 0 was arbitrary,

and since y ¢ M(Felﬁ) implies y > 0, we know M(Felﬁ) is empty.

(¢) 1If M(FelH) is empty, then by [4], Theorems 2, 4 and 5,
there must exist a vector ¢ satisfying (IIX.1.5). This
in turn implies, by [4] Theorems 4 and 5, that M(F|H) is

either unbounded or empty. Q.E.D.

We will assume throughout the remainder of this chapter
that M(F|H) is bounded and uonempty. In addition we will
suppose that there exists y ¢ H(A, b) satisfying y > 0.

This will save us from including these assumptions in the

hypotheses of each thecorem.

Theorem III.1.3: For each vector & > 0, let M(F6|H(A, b))

= {x(&)}. Then x(&) and %(¢&) are continuous functions of
e s 0,
Note: This statement is equivalent to saying that x(&)

solves (ITI.1.1). By the previous two theorems, x(€) is a

positive, single—~valucd vector function of the vectorx &,
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Proof: Since x(&) > 0, k(&) is well defined and continuous
if x(e) is continuous. To see that x(€) is continuous,

see [8], Cor. I.2.4, p. 528. QED,

It is our purpose in this section to show that the
continuity of x(€) and %(€) extend in some sense to & = 0,
which characterizes the original problem, (I.6). That
is, we wish to sbow that if each component of € is chosen
sufficiently small, then the solution §(8) will be as close
as desired to some solution of the original problem, and

(&) will approximate a vector of virtual mole fractionms.

Lemma III,1,4: Let {ak} be a sequence satisfying 8k > 0 v~k

and ek - 0. Then there exists an infinite subsequence
S of (1, 2, ...) such that x° = lim x(&k) exists, and for

keS
cach such subsequence,

(III.1,10) x® ¢ M(F|H(4, b)).

Proof: [8], Corollary II.3.1, p. 545, and Theorem I.2.2,

p. 526; and Thecrems IIX.1.1-2 above. Q.E.D,

Toeorcm IIT,1.5: Let {ak} be as in Lemma III.1.4, Then there

exists a subsequence S of (1, 2, ...) such that & = lim ﬁ(ek)

keS
exists, and for cach such £ we have that:

(III.1.11) £ e 1%,
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Proof: Since for every j and k, 0 < ﬁj(ek) < 1, we can
find a subsequence S of (1, 2, ,..) so that & = &22 &(ek)
exists.,

By Lemma III.1.4, we may find a subsequence S' of S
such that x° = lim' x(ek) egists, and x° ¢ M(F|H).

Since x(8k¥€§ M(FelH), and since x(ek) > 0 for each
k (making every reaction vector admissible at x(ek)), we
know that for each ¢ satisfying Ae'= 0, we must have
g+ (c + log ﬁ(ek)) = 0. Taking the limit of this expression

as k € S' becomes infinite, we find:
(II1,.1.12) 6+(c +log &) =0 ~vp 3 Ag = 0.
Clearly, for each phase <j>,

(II1.1.13) T =1lin (I % () <1.
J keS' te<j> t

It is easy to show that for each j such that ﬁg is

defined,

(II1.1.14) g, =

>

and that for every j,

(II1I.1.15) > 0,

53

By (III.1.12-15), and Theorem II.6,

g € 3%,
Q.LE.D,
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2. Slacks: Special Form

The most natural sequences {8k} one may consider aye

those which take the form,
(I11.2.1) e = o

where o is a constant veccor with one strictly positive
element corresponding to each compartment and {tk} is a
sequence of positive real numbers whose limit is zero,

Tn this section we will explore the properties of the
sequence of solutions {x(ek)} to problem (III.1.3), where
e takes the form of (IIL.2.1).

We shall change our notation somewhat, Instead of

writing Fe(x), we will write F(x; t), where:

X,.. -+ to

X,
(111.2.2) F(x; t) = [g xj<;j + log — J )
L] <i> " T

to .
+ I tc<j> log — <2 }

The sums §<j> do not include the slacks, tO gy Also,
in writing F(x; t) we understand that the vector ¢ will

be constant, and so do not mention it. In the same way,
we will replace x(to) by x(t), leaving the constant vector
g out,

We shall show that %(t) approaches a limit as t = 0,
and we shall identify the limit., We shall attempt to do
the same for x(t), but, as the rcader will see, we fall

somewhat short of complete success,

T e i s

s e e
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Take %(t) first., Define the sets:
Js= {j|’€‘<j> = 1 ¥E € @*}
I=1{j¢ J.

In addition it will be convenient to define the related

sets:
= {<i>|f e 3 = {<irlTg, =1 ¥E e #¥)
I¥ = {<i>|j e I} = {<j> ¢ J¥)}

We know that for j ¢ J, ij(t) must converge as t - 0,
since it is bounded, since by Theorem III,1,5 every limit
point of X(t) must be an element of %, and since by Lemma
II.11, there is for j € J only one possible value for §j
if € e g*.

For each j, define a function of w as follows:

o o T
(111.2.3) gj(n) = exp(Ajn Cj>‘

We know from Theorem IL.4, and definitions (II.5b) énd (I1.15)
that if w(t) is the vector of Lagrange multipliers cor—
responding to the solution x(t), then ij(t) = §j(n(t)).
Substituting for ij(t) from equation (III.1.2), we may solve

for the quantities xj(t), 1 <3 <?7in terms of the quantitics

Ej(ﬂ(t)), 1 < j < n and the slacks to<j> The result is
just:

to_._E.(m(tL
(I1I.2.4) x, (t) = —<12 1) .

28
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Suppose that x® ¢ M(F|H). Then we know that:

111.2, £ Agxg (t) == A,(x.(t) - x9).
( 2 jel jeJ N J

Substituting (III.2.4) into (III.2.5) for j € I we find that:

(I11.2.6) = <i> 1§ ("(L)) - T J(xJ(t) >
jel 1l - §<J>(n(t)) jeJd

A simple computation from (IITI,2,3) shows that if:

Be(M = 2 1 es> 108 (= Tp ()

then:

g.{(m)
(ITI.2.7) 5 Fo<int = vg (m).

JeT (L - %y, (m)

By (III.2.7), equation (IXX.2.6) is the optimality condi-

tion for the problem:

Min g (=)
(11L.2.8) R
s. t. Ay = cy+ log ﬁJ(t)

That is, if we kaew for any fixed t the values of %J(t),

then w(t) would be a solution of (III.2.8).

Lemma ITX.2.1: If the matrix A has full rank m, then (I11.2.8)

possesses a unique solution m(t).

Proof: We know that (III.2.8) is feasible. That is 7(t)

satisfies A a(t) = ¢y + log %J(t).

© @ o e me e s
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For t > 0, we may compute the matrix of second partial

derivatives of g. This becomes,
a AT

2, ¢ >3
(I11.2.9) vog.(m) = AR RS )
PR T ger T (-E)  <ipelr (L-Tgp)

LIRS

= T Ay 8y Clearly Vzgt(n) is a positive
ke<i>

semidefinite matrix for all m such that E;j>(ﬂ) <1, jeld,

where B<j>
so that g(n) is convex on P¥,

Further, for any v ¢ B,

(1I1.2.10)  vi(vPg (m)Iv =0 « A%v

il

O.

To see that (IIT.2.10) is true, let ¥ be a diagonal

matrix with as many columns as there are indices in I. The

th tc<i>§* ‘
jj~= component of ¥ shall be yj = s 2. > 0, Then the

lm—.€<'>
first term of (IIIL.2.9) becomes AIYA§3 by “elementary lineax

sigebra one may show that viAYATv = O if and only if ATv = 0.

“1
A similar comment applies to the second texm of (111.2.9).

If there are two solutions nl and n2 to (IIX.2.8) they must

differ by such a v. TFurther, since each solution satisfies
the constraints, m* - 7 = v must also satisfy Ay = 0.
Hence Av = 0. Since A has full rank m, v = 0, so the solu-—

tion m(t) of (III.2.8) is unique. Q.E.D.

Next we wish to establish that %(t) must approach a
limit as t = 0. We will again assume that A has full rank

m.
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Theorem TTI.2.2: & = lim #(t) exists, and § = §(n¥), where
t-0
n% is the unique solution to!

-

(1I1.2.11) Min [- £ o,. log (1 ~T%_; (m)
' '<j>eI*<J> R

T ~.
s.F. , AJﬂ t_cJ + log §J .

(E. = lim %.(t), which we know exists.)
J 50 J
In particulér E?j> <'1 for each <j> e I¥,

Proof: For each t > 0, w(t) must satisfy:

Log (1 ~ 'e:<j>‘<n>>]

,2.12) Min [- .
(III.2 )Mm[ EI*U<J>

<j>e
s.t 2% = o + log %.(t)
» L[] J J J *

This is just (IIL,2.8) where we have divided the objective
function gt(n) by t.

We know that ﬁj(t) is continuous for j ¢ J, and is
bounded away from zero, Thus the right-hand side
(cJ 4 log 2J(t)) of the constraint set of (III.2.12) is
continuous at t =0,

Furthemmore, at t = 0, problem (ILII,2,12} has a unique
solution by Lomma ITL.2.1, Thus by [8], Corollary II.3.1
and Theorem I.3.2, we know that the solution w(t) to
(III.2.12) is continuous at = 0; hence %(t) is continuous

at zero, and § = lim £(t) nmust satisfy (IXI.2.11). Q.E.D.
t-0

Next we wish to work on x(t) itself, As we stated
carlicr, we have been unuble to prove that x(t) approaches

KA




a limit as t = 0, For the reasons that follov, we conjecture
that x(t) does have a limit,

Let € ¢ 3% be the limit of %{t) as described in Theorem
III1.2.2, By [5], Lemma 9.7, p. 370, we know there exists
v° ¢ M(F|H) such that for every compartment <j>, §°<j> =0
implies that §;j> = 0 for e?ch x ¢ M(F|H). We define the

index sets:

L= {3]%, <1} 3 Ix={<j>|je T
J = {j|§2j> > 0} s J* = (<ixlje B

K={j¢ i, =1 ;5 Ke={<hljex].

Lemma III.2.3: Let M(F|H) be bounded and nonempty, and

suppose there exists y e H(A, b) such that y > 0, Then

there exists a unique solution x* to the problem:

log

/ A
’ ’}: .2013 M. 4 = Mi { - .
(TII ) Min g(x) Mm\ <j2 x<J>)

o..

>eJ¥<J>
s.t, x ¢ M(F|H) .

Further, for each j ¢ J, x*j > 0.

Proof: From [5], Theoxem 9.5, p. 370, we can write M(F|H(A, b))
«§ the set of solutions to a system of linear equations together
with nonnegativity constraints, Let y° ¢ M(F|H) satisfy

Y? > 9 for each j € J, and define:

(III.2.14) B..= % A$°  ie
<j> ke<js kYK J

Then x ¢ M(F|H) if and only if:
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(a) %, = 93 for every j ¢ .% such that Ekj) > 0,

i
(III1.2.15) {(b) Xy = 0 for j ¢ J
@ F i TP X 20

If we find any solution ¥ to (III.2.15¢c) we may reconstruct
a unique element x of M(F|H(A, b)) by using (III.2.15a-b).
Further, that element x will satisfy xj > 0 for each j e J
if and only if x<j>
Thus (III.2.13) is equivalent to solving:

> 0 for every j e J.

(III.2.16) Min g(x) = Min (—Z o log §2j>)

S.t. T B .E. =b
iy e

It is easy to see that g(x), as a function of the X's,
is strictly convex, Since the constraint set is bouzded
(i.e., M(F|K) is bounded), (TIL.2.16) has @ v:inua solu-
| tion, Since therc cxists 2 positive feasible solution,
and since g(x) is infinitec if some E<j>
is clear that the solution x* to (III.2.16) 1s positive on

J. Q.E.D.

=0, jelJ, it

We conjecture that x(t) has a limit as t - 0, and

that lim x(t) = x*,
t~0



By definition, x(t) is the uniquc - >iat in M(F( - , t) |H) .

Thus, x(t) is also a solution (though not necessarily the

unique solution) to:

(1I1.2.17) | - @
Vs %, .. (t
Min G(y, t) =Min I yj(cj + log —~ + log — <J2 )
TUK C Yk Eegp () T oy
+ T y. (c. -+ iog yj )-— z tc<j> log(§<j> + tc<j>)
3\ Y., . <j>eJ¥
J Veis RPN j>eJ

S.t, y ¢ H(4A, b).

It is easy to see that G(y, t) is convex for fixed t, though
5.£ is not nccessarily strictly convex; and surcly x(t) sai—

isfies the condition that:

G(r(), ©)
3yj

n D = T
¢y A log xj(t) Ajn(t).

We separate G(y, t) into two parts. Let:

(171.2.183) g(y, t, B) =T yj<;j 4+ log :Zi_)

Y5>
X,
+ BT "'<.> log — <2
<1 x> T B

(II1.2.18b) h(y, t, B) = £[G(y, t) — gy, t, B)].

If we then define the set:
(II1.2.19) $5(2) = {y ¢ Ulgly, t, B) < glx(t), t, B)]
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then it is oﬁviou;.thét for any t >0,

(111.2.20) ¥ € S55(8) = h(y, &, B) » hx(D), t, B). |
Equivaleﬁtly we may write:

(IT1.2.21)  x(£) e M(h(+, &, B)[Sg(tD).

Lemma IIX.2.4: Let M(F{*, 0)|H) be bounded and nonempty.:

Then for any 0 < 8 < 1, M(F(-, 0) |H) < SB(t), for all t > 0

surficiently small.

Prcof: Note that gy, t, B) is convex in y for fixed t
and B. Let x° ¢ M(P(-, 0)|H).
Notice - chat zly, t, £) is 2 Gibbs function with each

c., for j = I, wodifiad to:

ow

J)
t LR ()
. \ <2 = =B log T_. () jie 1.
¢, =c, + B log : e = c; F P log 5. (), 3
i3 5 (t) + oo 3 3>

B 3>

Let € = 1im %(t), as in Theorem IIT,2.2. We know that
t-0
e §%, If we xeplace ¢ by dj for every j ¢ I, where:

(727

d, = 4 log k..
dJ CJ log A<3> jel
. . v e ; . t B
and log k.., » log ¥, then cleaxly §' defined by gy = e

. A
is an eclement of the new &%, so that x° is a solution to

the perturbed problem,
But for given B < 1, we can always pick

tg > 0 sufficiently small so that fox 0 <t<t

B

# sk < ot et o o, w1 b o o e a o —— e




B log

Ty (B)

0= (t
F P togsy

> log s

Thus x° ¢ SBGt) for0 <t S tg Since g(x, t B) is con-
. stant oh M(F(., 0)|H),

Lerma ITI.2.5: Let x° € M(F(+, 0)|H) be fixed.

M(F(+, 0)[H) < st

0<tsty

Q.E.D.

The next item we must study is the function h(y, t, B).

This we deal with in ‘two lesmas.

t-0

Lim h(x s & B) =

log X°
<j>eJ*<j> <S> <j>eJ* °<3

Then

o
s, ifC(x") =J

if ¢(x%) < J.
*

Proof: Since x° ¢ M(F(+, 0)|H), xg‘= 0 if je I UK.,
Thus from (III,2.17) and (III,2.18b),

hG, t, B) = &

<3>cJ*

-

z

< j>

1og

=0

2

X<

<j>

=0,

+ to<j>

z Log (=0 .
<j>eJ* Tgi>m0BM" <t t"<J>)'

Then:

= 0 by definition, for all t > 0

Suppose for some j € J, X N
0
* <
.\j> 1Og + to
<J> <
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and‘ 103( <3> + to<j>)- -0, <> log to 4> + ®.ag t -o 0.
On the other hand, if X° <j> > 0, we see that:
: -o k
1 X¢ o k
et 1°8 0 + ta ] "t‘q' D~y
. X< <PH <.1> : '

_Also,

=0 ' - =0
s> 108 Ry + £o¢gy) = =gy 108 Xy

Thus the lemma is proved., QED,

Lemma IXI1,2.6: Let {En} be a sequence satisfying t, > 0

for every n, t = 0 and x(t ) - v ¢ M(F|H) as n = =,
Let h = h(x(tn), to B). Then if the carrier C(y°) g J,
1lim hn = o, Otherwise (i.e., if C(y°) = J) '

n-—e
'

lin b, = (1= 6) 3 <J>E<J> log Toys .

o
e <is>e I* -'5< > <J>eK¥uJ* '
-z “°<J> Log -ip<j>
<j>eJ¥
where € « 1im k(t )
n-c
Proof: From equation (IIL,2.4), if j ¢ I,
(T11.2.22) 1in 55, (t) 1og 2 ey og T
noe <32 (t) + to 1-¢
'j> <3 <3>
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If jed U K. ‘»iv'e« see‘ that:

log — X ~_.~”°<j> S 0((_ | '?"g> ) )
X Ve Xy T s M N

X»

S X 45 (t) ' |
Multiplying by ST and taking the linit as n - o,

. n ,
clearly the error term vanishes, We are left with:

‘ - X, (t) X, 15 (t)
(II1.2.23) Lim S 105 X2 0
e n %¢s> () ¥ a0

* The remaining term is easy.

(1I1.2.24) —3.3.1: <§>e3~g‘<j> log (x<j>(tn') + _tn°<j>)

=2 0,. log T2 1f C°) = J

® if ¢(y%) < J.
%

Putting Equations (III,2,22-24) and (III.2.18b) together,

yleld the result we wish, QID.

These last three lemmas enable us to prove the following

theoxrem,

Theorem III,2.7: Let M(F(., 0)|H) be bounded: Let [tn] be

such that t, > 0 for each n, t,~0asn~ e and x(tn)
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-y° € M(F(*, 0)|H) as n = =, Then:
.0 O¢i> log _;Si_
<j>EJ* '*<j ' <j>€K$

Proof° For sufficiently large n (i.e., sufficiently small
t > 0), Lemma III 2.4 tells us that

x* € Sﬁ(t) ‘ -

since x* ¢ M(F(-, 0) |H). Thus for n sufficiently large,

we have by (III.2.20) that: !
‘ 1

Thus, taking limits as n = « of both sides of (III.2.25) ;
we find that Lemmas VI,2.5-6 imply: ' 4
0, . logZ 1

(IT1.2.26) = T o log Ry > (L= 6) 3 PP K |
<j>eJ* <JseI» 1 *V§Ej> §

hand z 2 * 5° ® PY -T

<\j>el<hcr 3> <J>eJ*o<J> toe y <> £

Clearly, since the left-hand side of (III,2.26) is finite, i

the right—hand side cannot be »; hence, C(y%) = J, by Lemma
IIT,2.6, |

Further, by Lemma III.2,4, Equation (III.2.26) is true
(L -=B) >0 be as small

for every B < 1., Thus letting & =

as we wish, we see that, as the theorem says,
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The left;hand inequality is a. consequence of Lemma III.2,3,
since y° ¢ M(F(-, 0)|H). QED.

The important corollaries of Theorem III.2,7 are as
follows.,

Corollary III,2.8: If y° ¢ M(F(., 0)|H) is a limit point of
x(t) as t + 0, then C(yo) = J,

Proof: Inmediate,

Corollary III.2.9: If K is empty (i.e., if for every j ¢ J,
Ekj> < 1), then x(t) has a limit x* as t = 0,
" Proof: If K is empty then the upper limit on

- o

e
log .._.SJZ
xX¥*

. <>
<j>eJ* <>
is zero. Thus:
~Z . V° . = = . X%,

By Lemma III.2.3, since x* uniquely solves (III.2,13)

we must have y° = x*, for cach limit point y° of x(t).
~QED,
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We conjecture that regardless of whether K is empty,
x(t) has a limit, and lim x(t) = x#, The reasors SuUpport-
ing this. conjecture areﬂghree. First, every example we
have tried leads us to the limit x¥, 'Second, we have the
following resuit.

Lemma III,2,10: Let every compartment <j> satisfying j ¢ J

be identical to every other, That is, if ji and jo are
any two indices in J, with <j;> <J,>, then for évery

‘kl € <jl>, there 13~5)k2 € <j2>»such that columns kl and
k2 of the matrix A are identical, and ckl = gkz. In-this

case x(t) - xx,
Proof: Clearly,

(II1.2.28) ¢, + log &, (t) = AL m(t) = ¢, + log & (t
ky & ky ‘&1‘( ) ko & kzﬁ )

at the equilibrium solution, since Akl - Akz. Thus: -~

. (I12.2.29) B, (9 = % (0)

Summing over all kl € <jl> and k2 € <j2>, and perform-
ing some simple manipulations, we.find that there exists

a number” x{t) for each t > 0 such that:

%>
(1II.2.30) - = J = A(t) ¥ <j> e J¥,
%egp(t) + to
If we let:
b1
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Bur(t) = & AR LE) , ¥<i>e JF
| P ke KT
(II1.2,31)
b(t) =b ~ T AI,XR(‘t) ..
keIUK & .
we fiotice that by (III.2.29), cach f_ 55()s for <j> & I¥,
is identical to every othe«r', and that since:
.2, . A .. X _. )= bt
(III1.2.32) <j>§J* <J>(t) (X<J.>(t) + to<ﬂ>) y (L)
we see that b(t) must be a :mul't'iple of ‘:'Z’»<j>(t). Let
b(t) = k(t) é<j>(t). Then Equation!:‘(IiI.Z.ﬂ32)‘ is equivalent
to:
(I11.2. X . (t) + to_.) = k(t).
(TL.2.39) B Gl(e) + o) = Ko
Equations (III.2:230Q) say that x(t) solves the problem:
‘Min[-2 o . log(X,.._ + to..0)|
IIT.2.34) s.t. T (X.. 4+ to.. = "
( ) <j>eJ-x-(k<J> tc<3>) k(£
x ¢ H(A, b) . |
Since (ITI.2.32) and (IIL.2.33) are equivalent, problem
(III.2,34) is the same as minimizing the .same Ffunction sub~ 1
ject to x ¢ H(A, b) and x satisfying (LIX.2.32) in place [
of (I1I.2.33).
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is «continuous at t = 0, and Xy JK(t) tend to zero at it =0,

But’ij(t) 1is continuous at t = 0, so that.

:80 that b(t) is' continuous and tends to b at ¢t = 0, Thus
in the limit as t - 0, problem (III.2.34) is equivalent to
the problem that defines x, i.e., problém (IIL.2.16). Thus
by [8], Corollary IL1.3.l and Theorem I.3.2,

lim x(t): = x*,
£-0
The third bit of evidence supporting the conjecture
is that in two senses, .a problem with a non-empty set of

indices K is the 1imit of a sequence of problems with K

empty.

Lemma IIT,2.11: Let

A_ = 7 A'g’_
P jek 3°3

where § € g%, [(By Lemma II.11, every & ¢ g% is the same

for indices j e K.) Let:
Hy = {x|Ax = b + 8B, x > 0],
Then
%Exg+ M(F|H,) = M(F|H).

Note L: The limit of a set is as defined in [8].

Note 2: The effect of this perturbation is to move each

index originally in K to J.
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Proof: Notice that this perturbation allows us to cor-

struct a solution x to tlie problem from .any -solution

x° ¢ M(FJH(4, b)) by

K if e J

J,
&g, if j e K ‘
tI';J 1if je

BnyS]é Theorem 9.5, p. 370- we know that any element of
M(F|H;) must be quasidependent on this solution x, That
is, we have for  the perturbed problem the same &* as for
£} & original.

But we argued in Lemma III,2,3 that we could write a’
set of linear constraints describing M(F|H(A, b)); and
ve ‘may do the same for_M(FIHE). Thus x € M(FIHsé if and

only if the sums §?j> (for j ¢ J U K) satisfy,

(IIT,2.35) 5B % =b+ b
<j>e JEYK* <j>r<g> K
§¥j> >0 ¥ <>
where

But by [8], Corollary II.3,1, the limit of the sct

of x satisfying (ITL.2.35) is exactly the set satisfying:
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(I1%.2.36) X
<jseJHUKH

£3l:j>x<j> =Db

-}-(.. 20 V<j>..

<j>

However, (1I1I.2.36) implies ithat Z<j> =) whenever

j € K; for if not, then there would be an x ¢ M(FIH(A,’b))

such that xj S 0 for j € K, contradicting the definition

of K. Thus (IIL.2.36) describes M(F|H(A, b)), and:
Lim M(F|Hg) = M(F[H(A, b))

QED..
It would be easy but pointless to prove that if X}

solved:

Min {~E Ocis log X<j>)

\< j>e JEUK*
~N ) — . o= 6 ~
s.t, ? B<J>X<J> b + ﬁK
< e JHUK*

Ry 20 ¥jedUuK,

then lim, x} = x¥, where x* is defined in Lemna III1,2.3.

6-+0
There is a second way we can perturb the problem so

that it satisfies the condition that K be empty., This

is by changing the ¢ values,
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Lemma TIT.2.12: Define new values for the cjls as follows:

ey if jelUJ
3 ey + € if je K
for some small & > 0.

For the new problem let the objective be:
(II1.2.37)  F(x) =% x5(Cy + log %;)
= F(x) + e x. .
jex
Then: ’

(111.2.38) M(F|H) = M(F|H), for each &> 0,

and if.az is the set of virtual mole fractions associated
with the perturbed problem, there exists £(€) e @2 such
that:

(III.2.39) '“€'<J.>(s) <1 ¥jeIUK.

Note: The effect of this perturbation is to move each j

originally in K to I.

Proof: To show (III.2.38) we note from (III.2.37) that since

x>0,

F(x) = F(x) +¢& % X, > F(x),

jeK
with equality if x ¢ M(F|H) (since then Xy = 0 if j ¢ K).
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Thus:
M(F|H) = M(F|H).

To show (III.2.39), pick any & ¢ #* (the set of virtual
mole fractions associated with the unperturbed problem)

satisfying:.

Egj> <1l forjel

Let £(e) be defined by:

(g, ifjelud
g.(e) =! I ¢
J gje if j € K.

Clearly, for j e K,

e

§<j>(8) = e < 10

It is trivial to check that £(€) ¢ §z. QED.

Again, it would be easy but pointless to prove that
lL_im+ %(t) is continucus as-a function of the perturbation
gfgt € =0, (The reader is refered to Theorem III,2.2.
Notice the similarity between this problem and that of prov—
ing x§ - x*, mentioned immediately before Lemma IIIL,2.12.)

Experiencé has led the author to believe that the
solution of the chemical equilibrium problem is continuous
in nearly every conceivabl.e perturbation, as one would
expect of a physical system, Unfortunately a proof of the

gencral statement that x(t) - x* as t - 0 has been clusive.

W7

. H

s f’;ﬁ-n«"-f”




REFERENCES

Bigelow, J. H., "Chemistry, Kinetics, and Thermodynamics".

Duffin, R. J., E. L. Peterson & C, Zemner, Geometric
Programming, John Wiley & Sons, 1967,

Hamala & Milan, ''Geometric Programming in Terms of
Conjugate Functions," Disc. Paper #6811, Interna—
tional Center for Managcment scicnceé, Universitd
Catholique .de Lonyain, Belgium,

Bigelow, J. H., J. C. DeKaven & N, Z, Shapiro, Chemical
Equilibrium Problems with Unbounded Constraint Sets,
The RAND Corporation, Ri=3Y5Z-ry, IUY70, Also to

appear in SIAM J. of Annl, Math.

Shapiro, N, Z. & L. S. Shapley, 'Mass Acticn Laws and
the Gibb's Free Encrgy Function,'" J. Soc. Indust.
Appl. Math, Vol. 13, Mo. 2, 1965, '

Dantzig, G. B., Linear Programming and Extensions,

Princeton Press, L963.

Bigelow, J. H., The Chemical. Equilibrium Problem,
Tech. Rep. #63=I, Operations Kcescarch House,
Stanford University, 1968.

Dantzig, G. B,, J. Follman & N. Z. Shapiro, "On the
Continuity of the Minimum Set of a Continuous
Function,” J. Math, Anal. & Appl. Vol. 17, No. 3, 1967,

L e e v b Ao o A s e Nl -

O

xa




PO —

o
T .

Z S At

e e e

bR .ot

AT

Unclassifiea
Security Classification

(Security classllication of title, body. of abetract and Indax

DOCUMENT COMTROL DATA - R&D o

Irig ennotation must be entered when thé ovarall raport e clessii:

Department of Operations Research
Stanford University
Stanford, Calif. 94305

1. ORIGINATIN G ACTIVITY (Corporate sisthor) -

20, REPORT SECURITY CLASPICA

26. erour

3. REPORT TITLE

DEGENERACY IN IDEAL CHEMICAL ‘EQUILIBR

UM PROBLEMS.

‘1 4. DESCRIPTIVE NOTES {Tyxrw of topr.\“rt and Inclusive dates)
Technical Report

$. AUTHOR(S) (Last name, fiset nome, Initial)

BIGELOVW, James H.

6. REPORT DATE

Mqrch, 1970

748. TOTAL NO. OF PAGES’ 7b.§0- oF REFs

‘§ 88: CONTRACT OR GRANT NO.

N00014-67-A-0112-0011

b. PROJECT NO.

Q4. ORIGINATOR'S REPORT NUMBER(S)

Technical Report No. 70-3

NR-047-064

*C.

d.

this roport

95. OTHCR nfnon'r NO(S) (Any other numbate that mey be.assigned

10. AVAILABILITY/LIMITATION NOTICES

of this document is unlimited.

This document has been approved for public release and sale; Distribution

1. SUPPL EMUNTARY HOTES

» 13, Abstract

1Z. SPONSORING MILITARY ACTIVITY

~ Operations Research Program (code 434)
Office of Naval Résearch
Mashington, D. C. 30 20360

geometric programming problems), the phrase-
siderably simplifies the chemical equilibriu

derivative may be <infinite.

degenerate composition vector is a solution.
We point out that a composition vector
if and only if it satisfies the mass-balance
of concentrations satisfies certain optimali
ciated with a variable is the ratio of that
in the same phase. Thus the concentrations
defined. Even when some phases are empty, h
tities to replace the missing concentrations

problem is nonempty and bounded.
to some solution to the original problem.

Areu
)

A single- or multi-phase chemical equilibrium problem may be viewed as the problem
of minimizing a particular nonlingar function (the free energy) of composition sub-
Jject to the conditions that the composition variables be nonnegative and satisfy

a system of linear equality constraints (the mass-balance lausg

of this form occur in other than chewical problems (for example in connection with

. Because problems

“chemical equilibrium problem" refers

in this paper only to a particular nonlinear programaing problem. L
The firee energy function is convex and homogeneous of degree one, which con-

m problem. However, as the amount of

some composition variable approaches zero, the directional derivative of the free
energy may become {in the Yimit) a nonlinear function of direction.

Indeed, the

i Since there are problems whose solutions include vari-
ables with value zero, it is necessary to derive methods. for recognizing when a

solves a chemical equilibrium-problem
constraints and the associated vector
ty conditions. The concentration asso-

variable to the sum of all variablés

of species of an empty phase are un-

owever, it is possible to define quan-

An alternative method to handle degenerate problems is to add a minute amount
of a nonreacting, nondiffusing substance to each phase.

have a unique, nondegenerate solution whenever the set of solutions to the original
The solution to the perturbed problem will be close

This perturbed problem will

Y FORM o Y
DL’ 1 JAH 64 if-’.-l'u

Unclassified

Secutity Classification

.

. ‘_,(‘f,”“ N wmen

>
Ry

o
Y .
v A% 8 Vo Cale 0 e cal B R TN R o

’?ﬁ.“,gxb s

AR T T

e P g ek

<

B e bty

e,

ool MderiGn

[ R———




[T

T

LA T I

SR NS e e s

TR

Unclassified . -~ -

70-3
", security Classification " . e
Y _—— e — LINK A - TLINK B LINK C
) -KEY WORDS moLE | Wy | moLZ || wy ] moLE | wv

Nonlinear program

.Slack variables

Virtual mole fractions
Optimality .conditions
‘Mass-balance constraints,
Gibb's Free. Energ
Convexity -
Homogeneous
Chemical..Equilibrium

= " INSTRUCTIONS

1, ORIGINA'I‘H‘X@‘)ACA:‘I‘XVI'X“I:u Enter the name and address
of the contractor, subcontractor, grantee, Department of Do~

fense activity or'uther organization (corporate authce) issuing .

the report,

2a. REPORT SECURTY CLASSIFICATION: Enter the oves

all security clasoification of the reports Indicate whether
“Restricted Data’-is included. - Marking s to be in accord-
ance with gppropxlnte security regulstions.

2b. GROUP: Automatic downsrading le. specified in DoD Di-

rectlve 5200, 10 and Armed Forces Industrinl Manual, Entee

the group number, AlSo, when appliceble, show that optional
;nu:mgn have been used for Group 3 and Group 4 as ayihore
zed, *

3, REPORT.TITLE: ,Enter the complete report titie In all
copltal letters, Titles in all cacos should be unclagsified
If a meaningful title conuot be sclacted without classificas
tlon, nhow title clasalfication in all capitals in parenthesis

. Immodiately follawing the title,

4, DESCRIPTIVE NOTES: If oppropriate, entet the type of
report, e, interim, progiess, cummary, annunl, or finals
Give tho inclusive dates when a specific reporting pesiod s
covered,

S, AUTHOR(S): Enter tho nam>(s) of author(s) as shown on
or in thegeport, Enter lnst nome, firet name, middle initlal
It mititory, nhow fan’t nnd branch of scrvice, Tho nameof
the principal unthor is en absolute minimum requirement.

6, REPORT DATE: Enter tin: dote of the report as day,
menth, yeor; or.month, yean 1l more then onc dote appears
on the report, uoe date of publication.

7a. TOTAL NUMBER OF [-AGES: Tho total page count
should follow normal puslnation procedures, i.e., enter the
number of pages contalning information ’

76, NUMBER OF REFERENCES: Eater the total number of
references clted In the reports

8a. CONTRACT OR GRANT NUMBER: If sppropriate, enter
the epplicoble number of the contract or grant under which
the report was written

8b, &, & 8d. PROJECT NULBER: Enter the opproprinte
militacy department identification, such az project number,
subprofect number, systom numbers, task number, etc,

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offl-
clal report numbor by which the document witl be identlfied
and controlled by the originating activity, This number must
be unlque to \his report.

9b, OTHER REPORT NUMBER(S); I the report has been
asslgned any other rcport numbers (either by the originator
or by the aponaor), also enter this number(s),

10, AVA!I-ADIL!TY/L]MI"I‘AT!ON NOTICES: Enter any llim-

itatlons on furthor disuemination of the report, other than thosse|"

imposed by security classification, using stendard statements
such as: ’ *

(1) “Qualified requesters may obtain copies of this
report from DDCL?? ’

(2) “Foreign announcemont and dissemination of this
report by DDC is not authorized.”

(3) '*U. 8. Govornment agencles mny obtain coples of
this report directly from DDC. Other qualified DDC
users shall request through

(4) **U. s. military ugoriclos may obtaln copies of this
teport dircctly from DDC. Other qualified users
shall request thrgugh

"
.

(5)+ **All distribution of this report is controlled Qual-
ified DDC users shall requesi through

.'b

1f the report has boen furnished to the Office of Technical

Services, Dopartment of Commerce, for sale to the public, indi-

cate this foct and enter the price, i{ known

11, SUPPLEMENTARY NOTAES: Use for additional explans-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or 1aboratory gpongoring (pasy~
ing foe) the reacarch and development, Include addrous.

13. ABSTRACT: Enter on abstruct giving a brief and factual
summary of the document Indicative of the report, even though
it may also appear elsowhore in the body of tho technicel re-

port, .If additional space i3 required, a continuation sheet ahall

be attached.

It is highly dealrable that the absateact of classified reportu
be unclassified. ‘Each paragraph of the abstract shall end with

an indication of the military security claasificativn of the in-

formatlon in the paragraph, reproscated as (T5), (S), (C), or (U).:
There i no Umifation on the longth of the abstract. How. |

ever, the suggested length Is from 150 to 225 words,

14.. KEY WORDS: Key wordu are technically meaningful terms

or short phrases that characterize'a report and may be used
index entrles for cataloging the report. Key wordsy m:n‘bd "

selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military}’

project code name, geogruphic location, may be used as k
words but will be '{ollowed by an lndlcl'IIonyo( technical c:z-

. text, The assignment of linke, rales, and weights is optional.

DD .5,

473 (BACK)

© s e e s

Uné]assified

Security Classification

S e e e gmn s —— Dt

e e A ————————

1 et o




